algebraic nonlinearity in volterra-hammerstein equations

نویسندگان
چکیده

here a posteriori error estimate for the numerical solution of nonlinear voltena- hammerstein equations is given. we present an error upper bound for nonlinear voltena-hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of brunner for these problems (the implicitly linear collocation method).we also generalize this upper bound for nonlinear volterra integro-differential and volterra- hammerstein integral equations of mixed type . finally, several numerical examples are gken to show effectiveness of these bounds

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ALGEBRAIC NONLINEARITY IN VOLTERRA-HAMMERSTEIN EQUATIONS

Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...

متن کامل

On local regularization methods for linear Volterra equations and nonlinear equations of Hammerstein type

Abstract Local regularization methods allow for the application of sequential solution techniques for the solution of Volterra problems, retaining the causal structure of the original Volterra problem and leading to fast solution techniques. Stability and convergence of these methods was shown to hold on a large class of linear Volterra problems, i.e., the class of ν-smoothing problems for ν = ...

متن کامل

Rough Volterra equations 1: the algebraic integration setting

We define and solve Volterra equations driven by an irregular signal, by means of a variant of the rough path theory called algebraic integration. In the Young case, that is for a driving signal with Hölder exponent γ > 1/2, we obtain a global solution, and are able to handle the case of a singular Volterra coefficient. In case of a driving signal with Hölder exponent 1/3 < γ ≤ 1/2, we get a lo...

متن کامل

Solution of nonlinear Volterra-Hammerstein integral equations using alternative Legendre collocation method

Alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear Volterra-Hammerstein integral equations. For this purpose, the operational matrices of integration and the product for ALPs are derived. Then, using the collocation method, the considered problem is reduced into a set of nonlinear algebraic equations. The error analysis of the method is given an...

متن کامل

Numerical Solution of Interval Volterra-Fredholm-Hammerstein Integral Equations via Interval Legendre Wavelets ‎Method‎

In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...

متن کامل

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
journal of sciences islamic republic of iran

جلد ۱۰، شماره ۱، صفحات ۰-۰

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023